<u>SYN-ANTI</u> SELECTIVITY IN CYCLOADDITIONS. PART II.¹ REACTION OF CYCLIC NITRONES WITH <u>CIS</u>-3,4-DISUBSTITUTED CYCLOBUTENES C. De Micheli, A. Gamba-Invernizzi and R. Gandolfi Istituto di Chimica Organica dell'Università, 27100 Pavia, Italy (Received in UK 29 May 1975; accepted for publication 5 June 1975)

Diazoalkanes 1 and nitrile oxides, 1,3-dipoles both with an orthogonal double bond, are known to react readily with cis-3,4-dichlorocyclobutene to give mix tures of syn and anti adducts, the syn cycloadduct being dominant whenever the 1,3-dipole structure is not highly hindered.^{1,2} In order to explain the high per centage of the syn isomer in the cycloaddition reaction mixtures, the stabilizing interaction (as depicted in 2) between the empty p atomic orbital on the end ni trogen atom of diazoalkanes (or on the carbon atom of nitrile oxides) and the lone pair of the chlorine atom has been put forward.³ This interaction is operating when the 1,3-dipole is already bent; at an early stage of the reaction an interac tion of this type may be supposed between the orthogonal π^* of the linear diazo alkane (or nitrile oxide) and the chlorine lone pairs.

Pursuing our studies on <u>syn-anti</u> selectivity in 1,3-dipolar cycloadditions, we now report that even in the reaction of cyclic nitrones, i.e. 1,3-dipoles without an orthogonal double bond, with <u>cis</u>-3,4-dichlorocyclobutene the <u>syn</u> adduct is the major constituent in the mixture of the two adducts. It appears, therefore, that the secondary orbital interaction model above described for 1,3-dipoles possessing an orthogonal double bond does not represent the main fa<u>c</u> tor controlling the <u>syn/anti</u> ratio in 1,3-dipolar cycloadditions.

Both 3,4-dihydroisoquinoline-N-oxide and 5,5-dimethyl- Δ^1 -pyrroline-N-oxide, heated under reflux in benzene with <u>cis</u>-3,4-dichlorocyclobutene (3a), yielded a mixture of two 1:1 adducts, which were separated by column chromatography (Ki<u>e</u> selgel H Merck; eluant cyclohexane/AcOEt 4:1).⁴

Structures 4a and 6 were attributed to the major components, which in both cases possess the higher m.p.'s and the smaller R_F values,⁵ whereas structures 5a and 7 were assigned to the minor components.

Following ¹HNMR data are relevant for structural assignments: (i) the values of J_{45} (3.0 Hz, showing a <u>trans</u>-relationship between H-4 and H-5 protons,⁶ infer an <u>exo</u>-transition state, e.g. <u>8</u>, for the formation of all four adducts <u>4a</u>, <u>5a</u>, <u>6</u> and <u>7</u>; (ii) the variations of chemical shifts values of protons H-4 compared

TABLE. Yields, ¹HNMR data of compounds 4-7 for deutero-benzene solutions and $\Delta \delta = \delta (\text{CDCl}_3) - \delta$ (deutero-benzene) values (in brackets).^a

Comp.	Mp(°C)	Yield (%)	H-1	H-4	H - 5	$J_{45}^{(Hz)}$
4a	161	71	3•90-4•20m ^b (≥0•50)	4•78d(≤ 0•25)	3•09m(0•67)	2 • 5
5a	102	26	4•55m(≤0∘30)	3•77bs(≥0•67)	3•40m(0•35)	<0.5
4b	141-3	12	4•38m(0•50)	5•80d(-0•23)	3•38(0•44)	2 • 7
5b	97-99	85	4•70m(0•05)	$4 \cdot 00 bs(0 \cdot 35)$	с	<0.5
6	157	68	4•13m(0•60)	3•77m(0•19)	2 • 7 3m (0 • 8 5)	< ⁰ •5
7	91	29	4•51m(0•19)	$3 \cdot 02m(0 \cdot 69)$	3.02m(0.38)	<0.2

^a $\Delta\delta$ of H-6 and H-7 protons for <u>syn</u> adducts are higher than the $\Delta\delta$ relative to H-4 proton; the opposite was observed for <u>anti</u>-adducts. ^bOverlapped by <u>si</u> gnals of H-6 and H-7 protons ^cSignal could not be identified with certainty

with those of other protons by passing from $CDC1_3$ to C_6D_6 point toward a <u>syn</u>-structure for compounds <u>4a</u> and <u>6</u> and toward an <u>anti</u>-structure for compounds <u>5a</u> and <u>7</u>.

The significantly smaller variation observed for proton H-4 in adducts $\underline{4a}$ and $\underline{6}$ is due to the face of the molecule bearing the H-4 proton possessing a lower degree of solvation because of the steric hindrance by the chlorine atoms.

Comparison of the <u>syn/anti</u> ratios for adducts obtained in boiling EtOH (over all yield 96%; ratio 4a/5a = 3.45), acetonitrile (94%; ratio 4a/5a = 3.05) and benzene (ratio 4a/5a = 2.73) respectively, showed that the higher the solvent polarity, the larger is the amount of the <u>syn</u> isomer.

3,4-Dihydroisoquinoline-N-oxide has been also reacted with \underline{cis} -3,4-dicarbome thoxy cyclobutene (3b) and the anhydride (3c) in benzene at room temperature. In the former case the <u>anti</u>-isomer 5b (having a lower m.p. and a higher R_F than the <u>syn</u>-adduct 4b) was largely dominant; with 3c the <u>anti</u> adduct 5c was exclu sively formed.⁹

Structural assignements of 4b and 5b follow from their ¹HNMR data (see Table). Significantly H-4 proton of compound 4b absorbed at very low fields being de shielded by the carbomethoxy group at position 6. Owing to the same deshielding effect, the aromatic proton H-a (ortho to C-4) was found to absorb at lower field than the other aromatic protons both in benzene and in CDCl₃ (H-a proton δ 7.95 m and 7.67 m; other three aromatic protons δ 6.80-7.20 and 6.97-7.40 in benzene and CDCl₂, respectively).

The above results allow us to draw the following conclusion: simple steric interaction and dipole-dipole repulsive interactions favour formation of <u>anti-</u>adducts in 1,3-dipolar cycloadditions of cyclic nitrones with cyclobutenes 3b and 3c. This is in sharp contrast with the behaviour of the same 1,3-dipoles reacting with dichlorocyclobutene to give <u>syn</u>-adducts as a result of positive electronic effects.

Since the stereochemistry of final adducts in the latter cycloadditions implies only <u>exo</u>-transition states, the terminal ends and not the central atom of the 1,3-dipole must be taken into account.

Whether these electronic effects involve a $6 - \pi^*$ interaction in the dichlor rocyclobutene¹⁰ or a stabilizing interaction between the LUMO 1,3-dipole and the chlorine lone pairs e.g. 8^1 or even Van der Waals-London forces,¹¹ will be the object of further studies.

<u>Acknowledgements</u> - We thank Professors G. Bianchi and P. Grunanger for discussions, the Consiglio Nazionale delle Ricerche (Rome) for financial support and BASF for a gift of cyclooctatetraene.

References and Footnotes

- Part I, G. Bianchi, C. De Micheli, A. Gamba and R. Gandolfi, <u>J.C.S. Perkin I</u>, 137 (1974)
- 2. M. Franck-Neumann, Angew.Chem.Int.Ed., 8, 210 (1969)
- N. El-Ghandour, O. Henri-Rousseau and J. Soulier, <u>Bull.Soc.Chim.France</u>, 2817 (1972)
- 4. All compounds gave satisfactory C,H,N ($\pm 0.3\%$) analyses.
- 5. The TLC behaviour is in agreement with a predicatable larger dipole moment for the syn-compounds.
- 6. As found for similar systems, a <u>cis</u>-relationship would require a $J_{45} \ge 6.0 Hz_{-}^{7}$
- 7. G. Bianchi, A. Gamba and R. Gandolfi, Tetrahedron, 28, 1601 (1972)
- 8. A definitive proof for the correct attributions of structures to adducts 5a and 6 is represented by the preliminary results of an X ray study on such compounds: A. Coda Corsico Piccolini and S. Coda, private communication.
- 9. Compound 5c was not isolated as such but was transformed into 5b (overall yield 69%) on $CH_{3}OH/H_{2}SO_{4}$ treatment.
- 10. M. Franck-Neumann and M. Sedrati, Angew.Chem.Int.Ed., 13, 606 (1974)
- 11. K.L. Williamson, Y.F. Li Hsu, R. Lacko and C. He Youn, <u>J.Am.Chem.Soc.</u>, <u>91</u>, 6129 (1969)