SYN-ANTI SELECTIVITY IN CYCLOADDITIONS. PART II. REACTION OF CYCLIC NITRONES WITH CIS-3,4_DISUBSTITUTED CYCLOBUTENES C. De Micheli, A. Gamba-Invernizzi and R. Gandolfi Istituto di Chimica Organica dell'Universith, 27lOO Pavia, Italy (Received in UK 29 Hay 1975; accepted for publication 5 June 1975)

Diazoalkanes & and nitrile oxides, 1,3-dipoles both with an orthogonal double bond, are known to react readily with cis-3,4-dichlorocyclobutene to give mix tures of syn and anti adducts, the syn cycloadduct being dominant whenever the 1,3-dipole structure is not highly hindered. In order to explain the high per centage of the syn isomer in the cycloaddition reaction mixtures, the stabilizing interaction (as depicted in 2) between the empty p atomic orbital on the end ni **trogen atom of diazoalkanes (or on the carbon atom of nitrile oxides) and the lone pair of the chlorine atom has been put forward. 3 This interaction is operating when the 1,3-dipole is already bent; at an early stage of the reaction an interac** tion of this type may be supposed between the orthogonal π^* of the linear diazo **alkane (or nitrile oxide) and the chlorine lone pairs.**

Pursuing our studies on syn-anti selectivity in 1,3-dipolar cycloadditions, **we now report that even in the reaction of cyclic nitrones, i.e. 1,3-dipoles** without an orthogonal double bond, with cis-3,4-dichlorocyclobutene the syn **adduct is the major constituent in the mixture of the two adducts. It appears, therefore, that the secondary orbital interaction model above described for 1,3_dipoles possessing an orthogonal double bond does not represent the main fag** tor controlling the syn/anti ratio in 1,3-dipolar cycloadditions.

Both 3,4_dihydroisoquinoline_N_oxide and 5,5-dimethyl- A'-pyrroline-N-oxide, heated under reflux in benzene with cis-3,4-dichlorocyclobutene (3a), yielded a **mixture of two I:1 adducts, which were separated by column chromatography (Kie selgel H Merck; eluant cyclohexane/AcOEt 4:1).4**

Structures $\mathbf{1a}$ and \mathbf{b} were attributed to the major components, which in both cases possess the higher m.p.'s and the smaller R_F values, ⁵ whereas structures **La and 1 were assigned to the minor components.**

Following 'HNMR data are relevant for structural assignments: (i) the values of J₄₅(3.0 Hz, showing a <u>trans</u>-relationship between H-4 and H-5 protons, infer an <u>exo</u>-transition state, e.g. <u>X</u>, for the formation of all four adducts \mathcal{H}^3_α , \mathcal{H}^3_β , and 7; (ii) the variations of chemical shifts values of protons H-4 compared

TABLE. Yields, ¹HNMR data of compounds $\frac{1}{4}$ -7 for deutero-benzene solutions and $\Delta \delta$ = δ (CDCl₃) - δ (deutero-benzene) values (in brackets).^a

 $a_{\Delta\delta}$ of H-6 and H-7 protons for syn adducts are higher than the $\Delta\delta$ relative to H-4 proton; the opposite was observed for <u>anti</u>-adducts. $\frac{b}{c}$ ^bOverlapped by s<u>i</u> **gnals of H-6 and H-7 protons 'Signal could not be identified with certainty**

with those of other protons by passing from CDCl₂ to C₆D₆ point toward a <u>syn</u>**structure for compounds 4a and 6 and toward an anti-structure for compounds** 5a and 7.

The significantly smaller variation observed for proton H-4 in adducts 4a and 6 is due to the face of the molecule bearing the H-4 proton possessing a lower degree of solvation because of the steric hindrance by the chlorine atoms.

Comparison of the syn/anti ratios for adducts obtained in boiling EtOH (over all yield 96%; ratio <u>4a</u>/<u>5</u>a = 3.45), acetonitrile (94%; ratio <u>4a</u>/5a = 3.05) and benzene (ratio $\underline{4a}/\underline{5a} = 2\cdot 73$) respectively, showed that the higher the solvent **polarity, the larger is the amount of the syn isomer.**

3,4-Dihydroisoquinoline-N-oxide has been also reacted with cis-3,4-dicarbomc thoxy cyclobutene (3b) and the anhydride (3c) in benzene at room temperature. In the former case the <u>anti</u>-isomer 5b (having a lower m.p. and a higher R_F than the syn-adduct 4b) was largely dominant; with 3c the <u>anti</u> adduct 5c was exclu sively formed.⁹

Structural assignements of 4b and \$& follow from their 1 HNMR data (see Table). Significantly H-4 proton of compound 4b absorbed at very low fields being de **shielded by the carbomethoxy group at position 6. Owing to the same deshielding effect, the aromatic proton H-a (ortho to C-4) was found to absorb at lower field** than the other aromatic protons both in benzene and in CDCl₃ (H-a proton δ 7.95 m **and 7.67 m; other three aromatic protons 6 6*80-7.20 and 6*97-7.40 in benzene and CDCl 3' respectively).**

The above results allow us to draw the following conclusion: simple steric interaction and dipole-dipole repulsive interactions favour formation of antiadducts in 1,3_dipolar cycloadditions of cyclic nitrones with cyclobutenes 3b and <u>3c</u>. This is in sharp contrast with the behaviour of the same 1,3-dipole reacting with dichlorocyclobutene to give syn-adducts as a result of positive **electronic effects.**

Since the stereochemistry of final adducts in the latter cycloadditions im **plies only exo-transition states, the terminal ends and not the central atom of the 1,3-dipole must be taken into account.**

Whether these electronic effects involve a $6 - \pi^*$ interaction in the dichlo **rocyclobutene 10 or a stabilizing interaction between the LUMO 1,3-dipole and the** chlorine lone pairs e.g. $\underline{8}^1$ or even Van der Waals-London forces,¹¹ will be the **object of further studies.**

Acknowledgements - We thank Professors G. Bianchi and P. Grunanger for di **scussions, the Consiglio Nazionale delle Ricerche (Rome) for financial support and BASF for a gift of cyclooctatetraene.**

References and Footnotes

- **1.** Part I, G. Bianchi, C. De Micheli, A. Gamba and R. Gandolfi, J.C.S. Perkin I, **137j1974) ^c**
- **2. M. Franck-Neumann, Angew.Chem.Int.Ed.,&, 210 (1969)**
- **3. N. El-Ghandour, 0. Henri-Rousseau and J. Soulier, Bull.Soc.Chim.France, 2817 (1972)**
- **4.** All compounds gave satisfactory C, H, N $(+0.3\%)$ analyses.
- **5. The TLC behaviour is in agreement with a predicatable larger dipole moment** for the syn-compounds.
- **6.** As found for similar systems, a cis-relationship would require a $J_{45} \ge 6.0$ Hz.
- **7. G. Bianchi, A. Gamba and R. Gandolfi, Tetrahedron, 28, 1601 (1972)**
- **8.** A definitive proof for the correct attributions of structures to adducts Sa and <u>6</u> is represented by the preliminary results of an X ray study on such **compounds: A. Coda Corsica Piccolini and S. Coda, private communication.**
- **9.** Compound \S ₂ was not isolated as such but was transformed into 5b (overall $\texttt{yield 69\%}$ on $\texttt{CH}_3^{\texttt{OH/H}} \texttt{2^{SO}_4}$ treatment
- **10. M. Franck-Neumann and M. Sedrati, Angew.Chem.Int.Ed., 3, 606 (1974)**
- **11. K.L. Williamson, Y.F. Li Hsu, R. Lacko and C. He Youn, J.Am.Chem.Soc., 9l, 6129 (1969)**